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Abstract

Noah (version 2.7.1), the community land-surface model (LSM) of NCEP-NCAR, which
is widely used to describe the land-surface processes either in stand-alone or in cou-
pled land—atmospheric model systems, is recognized because snow—water equivalent
(SWE) can be underestimated. Noah’s SWE bias can be attributed to its simple snow
sub-model, which does not effectively describe the physical processes during snow
accumulation and melt period. To improve SWE simulation in the Noah LSM, the Utah
Energy Balance (UEB) snow model is implemented in Noah to test alternate snow-
surface temperature and snow-melt outflow schemes. Snow surface temperature was
estimated using force—restore method and snow melt event is regulated by accounting
for the internal energy of the snowpack. The modified Noah SWE is compared with the
SWE observed at California’s NRCS SNOTEL stations for seven water years: 2002—
2008, while the model snow-surface temperature is verified with observed surface-
temperature data at an observation site in Utah. The experiments show that modifica-
tion in Noah'’s snow process substantially reduced SWE estimation bias while keeping
the simplicity of the Noah LSM. The results suggest that the model did not benefit from
the alternate temperature representation but primary improvement can be attributed to
the substituted snow melt process.

1 Introduction

The Noah LSM, a moderately complex community model, is widely used in weather and
regional-climate models and is the operational land-surface scheme for NCEP-NCAR
(Chen et al., 1996; Chen and Dudhia, 2001; Ek et al., 2003; Leung et al., 2005, 2006;
Jin and Miller, 2007; and Jiang et al., 2008). It is also used in land-data assimilation
systems such as the North America Land Data Assimilation System (Mitchell et al.,
2004), the Land Information System (Peters-Lidard et al., 2007), and HRLDAS (Chen
et al., 2008). The model has been advanced numerous times to accurately predict
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warm- and cold-season processes, which resulted in various versions of the Noah
LSM. Noah version 2.7.1 (used here) includes major modifications in snow processes
by Koren et al. (1999) and Ek et al. (2003).

However, the model has been noted for substantially underestimating SWE (Jin et al.,
1999a; Pan et al., 2003; Sheffield et al., 2003; Mitchell et al., 2004; Jin and Miller, 2007;
Slater et al., 2001, 2007; Livneh et al., 2009; Wang et al., 2010; Barlage et al., 2010;
Niu et al., 2011; Yang et al., 2011) by simulating less amounts of snow and melting
the snow early in the spring. Various factors can influence SWE modeling, but some
significantly affect snow-accumulation periods, while other factors drive the melt meta-
morphism during the ablation period. Precipitation is an important factor that directly
influences snow accumulation, but rapid changes in snow albedo are highly depen-
dent on local site factors, such as latitude, topography, land cover (i.e., grassland or
forest cover), and aspect (i.e., slope, orientation) (Dingman, 2009). The ablation pe-
riod is driven primarily by the surface-energy exchange between the snow and air
interface (Yerdelen and Acar, 2005). For example, Niu et al. (2011) considered sur-
face heterogeneity and separated the energy exchange by the canopy layer to improve
surface-energy balance, Their SWE estimates show improvement in comparison with
observations and the Noah LSM results at default runs. In addition, snow accumulation
and ablation processes are also affected by land covers (Mahat and Tarboton, 2011),
which are addressed by several research groups. For example, Livheh et al. (2009)
and Barlage et al. (2010) suggested that inclusion of snow-aging processes in the
snow-albedo decay scheme can reduce Noah’s SWE estimation bias. While the two
previously mentioned researchers evaluated the model in different mountainous areas,
Wang et al. (2010) showed that Noah SWE simulation can be improved by consid-
ering the vegetation shading effect, under-canopy resistance, and roughness length
adjustment in boreal forests and other grasslands.

However, snow-surface temperature influences the rate of sublimation because it
governs the surface vapor pressure, which in turn controls snowmelt during the ablation
period. Considering the effect of surface temperature on sublimation and snow melt,
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Niu et al. (2011) replaced Noah’s single-layer snowpack with multiple layers to explicitly
capture the non-linear temperature gradient of the snowpack. Complex snow models
(ex, SNTHERM, Jordan, 1991; CLM, Dai, 2003; SAST, Jin et al., 1999b) also apply
finite-difference models to simulate snowpack temperatures. In these finite-difference
models, changes in snow properties within layers (Anderson, 1976; Colbeck, 1982; Jor-
dan, 1991; Arons and Colbeck, 1995) are estimated, which are useful in some applica-
tions. However, the only piece of information required for climate study and hydrologic
prediction is the snow-skin temperature, because the temperature gradient between the
snow surface and atmosphere drives the turbulent fluxes (Luce and Tarboton, 2001).

In this study, we address the problem of Noah’s SWE bias and early snowmelt by
implementing the snow-surface temperatures and snow-melt processes of the Utah
Energy Balance (UEB) model in the Noah LSM (Tarboton et al., 1994; Tarboton, 1994;
Tarboton and Luce, 1996; Luce and Tarboton, 2001). Similar to the Noah model, UEB
simulates snowpack as a single layer but applies the force-restore method, which, un-
like the finite-difference methods, implicitly represents temperature profiles within the
snowpack.

The force-restore method has also been assessed by Dickinson et al. (2003) for
snow-surface temperature prediction, but it has been applied more widely in various
land-surface and hydrologic models to estimate soil temperature (Deardorff, 1978; Noil-
hand and Planton, 1989; Mahfouf et al., 1995; Dickinson, 1993; Sellers et al., 1996;
Dai et al., 2003; Kahan et al., 2006; Gao et al., 2008). The method has been popular
because it uses a minimum number of prognostic variables while capturing important
physical processes with reasonable computational efficiency (Ren and Xue, 2004). Pre-
vious studies indicate that this method underestimates the temperatures of the deep
layer, even with some modifications (e.g., Mahfouf et al., 1995; Ren and Xue, 2004;
Luce and Tarboton, 2001; You, 2004; Luce and Tarboton, 2010). In this study, we have
chosen the force-restore-based UEB snow model as the target in the Noah LSM for
benefiting from its effectiveness in snow-surface temperature estimation, while keep-
ing the Noah land-surface model’s snow submodel as a single layer model. Single-layer
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snow models like Noah LSM are less complex to apply as it requires a small number of
input variables but still can retain important information about the processes, which are
advantageous in applying these models in global climate models (GCMs) or regional
climate models (RCMs) (e.g. Dickinson, 1993). In addition, the UEB model applies the
force-restore method along with evaluating the internal energy of the snowpack, which
is used consecutively to determine the snow-melt events by retaining liquid water within
the snowpack (Tarboton et al., 1994; Tarboton, 1994; Tarboton and Luce, 1996; Luce
and Tarboton, 2001).

Noah’s current approach for simulating snow temperature and snow-melt conditions
will be described in the next subsection. The UEB snow model is discussed in Sect. 3.
In Sect. 4, the study areas and forcing information are given. Results and discussion
on the modified Noah model are given in Sect. 5. Finally, the conclusions are drawn in
Sect. 6.

2 Current formulation and enhancement
2.1 Current method for snow-temperature estimation

In the Noah LSM, snow-surface temperature (T) for the entire snowpack is estimated
in a two-step process and Fig. 2 is the graphical representation of the both computation
processes during a snow season. In the first step, energy balance between the snow-
pack and the overlying air and underlying top soil an intermediate temperature (T;,) is
estimated (Koren et al., 1999; Ek et al., 2003). Detail of the energy balance equation
is given in the Appendix A. The method allows this temperature to rise above freezing
temperature (Tieezc) €v€Nn When the model grid is 100 % covered with snow as can be
seen in Fig. 2b.
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In the second step, the effective temperature for a model grid (T;) is adjusted by
accounting for the fractional snow cover (f,.,) in the ground as (Koren et al., 1999):

Ty =Ty, (T2 < Tireeze)
T1 = Tfreeze ’ ffca + 7-12(‘I - fs2ca)’

Equation (1) describes that, when the ground is completely snow-covered, T, is essen-
tially snow surface temperature which can be below or at freezing temperature. On the
other hand, T, can be above freezing temperature when the ground is partially cov-
ered with snow. The one of primary deficiency of the control model is that the snow sub
model is conditioned to initiate snowmelt whenever the temperature T, is at or above
the freezing point (Fig. 2d). But, snow surface at freezing point is not the single factor
to cause snowmelt. Snowmelt initiates only after the entire snowpack is isothermal at
0°C which is called as warming phase (Dingman, 2009). This phase is followed by
a ripening phase when melt water can retain in the snowpack until it exceeds liquid
water holding capacity of the snowpack. Therefore, to initiate snowmelt, it is crucial
to know at which state the snowpack is which can be determined by accounting for
the internal energy of the snowpack (Tarboton et al., 1996). Further, the warming and
ripening processes are not considered in Noah’s snow sub-model and, therefore, the
model overestimates the net energy which is used to control snow-melt outflow rate
(Livneh et al., 2009; Lundquist and Flint, 2006) resulting in a faster melt rate.

(1a)

(T12 > Tfreeze)- (1 b)

2.2 The UEB snow model

To overcome the deficiencies in Noah’s snow model, snow-surface temperature and
snow-melt processes of the Utah Energy Balance (UEB) snow model are evaluated
as an alternate method to the existing snow model. The UEB model was originally
developed by Tarboton et al. (1994) and Tarboton and Luce (1996), and later efforts
have been made to improve the model performance (Luce and Tarboton, 2001, 2010;
You, 2004). A detailed discussion of the UEB model and the force-restore method can
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be found in Tarboton et al. (1994, 1995), Tarboton and Luce (1996), and Luce and
Tarboton (2001), while a brief discussion of the model’s physical processes pertinent
to this paper is given below.

2.2.1 Snow surface temperature formulation

To compute snow surface temperature UEB model applies energy balance at the snow
surface unlike Noah LSM where net energy for the entire snowpack layer is computed.
In reality, the snow surface temperature is cooler (warmer) than the entire snowpack
temperature at night (day) time and therefore results a non-linear temperature gradient
within a snowpack layer. The UEB model approximates this temperature gradient by
differentiating surface temperature (Tg) from the average snowpack temperature (T).
At every time step, snow-skin temperature (T) is numerically solved using the Newton—
Raphson method by employing the following (Tarboton and Luce, 1996):

ch(Ts’?) = Qforcing(TS)
Qforcing(Ts) = anet + Qlin - Ql,out(Ts) + Qh(Ts) + Qle(Ts) + Qp

(2a)
(2b)

where Qg is the heat flux because of the temperature gradient within the snowpack
andQ,cing is essentially the heat flux considering all of the energy components at
the snow surface, Qg is the net short-wave energy, Q;, is the incoming long-wave
radiation, Q . is the outgoing long-wave radiation from the snowpack, Q, is the sen-
sible heat flux to/from the snow, Q is the latent heat flux to/from the snow, and Qp is
the energy advected by precipitation into the snow. The turbulent heat fluxes (Q, and
Q) and the outgoing radiative flux (Q o) are functionally dependent on the surface
temperature T, (Tarboton and Luce, 1996; You, 2004). Physically snow temperature
cannot be greater than 0°C and, thus, the upper bound of T, is constrained to freezing
temperature.
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Q. in Eq. (2a) is derived from thermal-diffusion equation which describes how tem-
perature changes with time along the depth of a layer and the equation is (Luce and
Tarboton, 2001, 2010; You, 2004):

2 2
oT _ (1) 0°T _ o°T @)
ot c) 8z2 022

with the boundary condition for temperature as:

Tlye0 = T + Asinat, (4)

where T is the temperature, t is time, z is the depth measured downward from the
surface, cis the volumetric heat capacity, and 1 is the heat conductivity, k is the thermal
diffusivity of snow (= £), T is the mean snow-surface temperature, A is the amplitude
of the diurnal snow-temperature wave at the surface, and @ is the angular velocity
of the Earth’s rotation (i.e., ® = 2m/24 rad h‘1). An approximate solution of Eq. (4) for
sinusoidal temperature fluctuation is (Carslaw and Jaeger, 1959):

T(z,t)= T + Ae7 sin <@)t - 2) (5)

where d is the diurnal damping depth, and d = \/2k/®. The equation may be used to
calculate the temperature gradient with depth which can be used with the heat conduc-
tivity (1) to compute heat flux (Q;) (Lin, 1980; Hu and Islam, 1995; Luce and Tarboton,
2001; Gao et al., 2008):

Quz,t) = A aTﬁ(i’ H_ % [Ae%f sin(@t - z/d) + Ae cos(@t - z/d)] . (6)
Further, rearranging Eq. (5) and then differentiating with respect to time t:

AetZDsin(@t - z/d) = T(z,t) - T (7a)
Ael=?/ cos(at - z/d) = % oT(z,1) (7b)

ot
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Using Egs. (7a) and (7b), Eq. (6) can be written as:

A (10T(zt) -
Q.(z,1) = 4 (5 T +T(z,t)- T) . (8a)
At the surface boundary where z = 0, the heat flux at the surface (Q) is:
B _ A1 (10T(0,1) =
Q.(0,1) = Qs = - (5 E TR T(0,t) - T) (8b)
A (10T —
QCS=E<56—:+TS—T). (80)

Equation (8c) is the basis for the force-restore method and with the finite-difference
approximation for 8 T, /0t in Eq. (8c) results in:

Q. = g (i (Ts - Tslam) + (Ts -?)) (9)

where At is the measurement time interval, and TSlag1 is the surface temperature lagged
by one time step, i.e., at t — At.

The average snow-surface temperature T given in Egs. (2)—(9) has not been de-
fined consistently in the literature (see examples of various definitions of T in Ren and
Xue, 2004). In the UEB model, T is defined as the depth-average snowpack tempera-
ture, which is derived from two state variables: snow water equivalent (W) and internal
energy (U) of the snowpack. Internal energy U is defined as the energy to the melting
point which means that, at 0 °C, ice possesses zero heat content (Tarboton et al., 1994;
Jin et al., 1999a, b). Not only snow temperature, internal energy has been also used
as a prognostic variable by Lynch-Stieglitz (1994) and Jin et al. (1999b).

Snow temperature affects sublimation from the snow surface. UEB applies turbulent
heat flux (Tarboton, 1994) while Noah LSM uses Penman equation (Wang et al., 2010)
to compute sublimation.
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2.2.2 Snow-melt formulation

In UEB model, whenever internal energy is positive, the snowpack attains sufficient
energy to initiate snow-melt and the snow-melt outflow rate M, from ripened snow is
simulated based on Male and Gray (1981) and is (Tarboton, 1994; Tarboton and Luce,
1996):
M, = K,S® (10)
where S is the relative saturation in excess of the liquid water-holding capacity, and K
is the snow-saturated hydraulic conductivity, which describes the water flux through the
porous snowpack and is a function of snow density, porosity, and liquid water-holding
capacity. The variation of K with a saturated water content of natural snow is not clear
(lida et al., 2000) and, hence, K; is essentially a calibration parameter for each location
(Tarboton and Luce, 1996). Different K values are reported in previous studies (Gray
and Male, 1981; Tarboton and Luce, 1996; Zanotti et al., 2004; Mahat and Tarboton,
2011; Tarboton, 1994; You, 2004), but the model is not very sensitive to the value of
K, and a K value of 20mh™" is used in this study, which reasonably describes the
snow-melt rate and timing at the study sites.
The parameter S in Eq. (10) is derived from the following relationship:

liquid water volume — capillary retention
- pore volume — capillary retention

(11)

where the value of variable S increases with increasing liquid water in the snowpack.
Liquid water is the amount of water that can be retained in the snow pores against
capillary forces, and consideration of capillary retention or liquid water-holding capacity
can delay snowmelt during the ripening phase (Dingman, 2009). Amid the ripening
phase, liquid water near the surface can refreeze with night-time cooling and thaw
during day. This refreeze and thaw cycle can continue for days if the liquid water does
not exceed the water-holding capacity of the snowpack. During the day, this cycle might
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need several hours to warm up and resume melting again (Dingman, 2009). Snow-melt
starts once the liquid water in the snowpack exceeds the water-holding capacity, and
the rate of melting increases with the increase of the amount of liquid water.

The parameter “liquid water-holding capacity” is difficult to measure from wet snow
because, during the snow-melt metamorphism, snow can be supersaturated yet be
below the liquid water-holding capacity due to the freeze-thaw cycle (Livneh et al.,
2009). In various studies, the liquid water-holding capacity is quantified as 3—9 % of the
volume of the snowpack (Denoth et al., 1984; Kattlemann, 1987; Kendra et al., 1994;
Albert and Krajeski, 1998). Jordan (1991) used 4 % of the pore volume in SNTHERM,
Lynch-Stieglitz (1994) used 5.5 % height of the compacted snow layer, while Dingman
(2009) suggested 6 % of the pore space as the liquid water-holding capacity. Following
Jordan (1991) and Denoth (2003), Livneh et al. (2009) applied 4 % of the pore volume
of the liquid water-holding capacity in the Noah model. Because the density of the
snowpack is different for fresh snow compared to old snow, Livneh et al. (2009) showed
that 4 % of the pore volume can range from approximately 2.5 % of SWE depth for old
snow to approximately 10 % of SWE depth for fresh snow. Here, we have used 5 % of
the total mass of the snowpack (liquid and ice) as the liquid water- holding capacity
(Tarboton et al., 1996), and the fraction of liquid water L; is estimated as:

U
L= w
pwf

(12)

where U is the internal energy of the snowpack, W is the snow-water equivalent, p,, is
the density of water, A; is the heat of fusion of ice, and p,,A;W is the energy required to
melt the entire snowpack at 0°C. A sensitivity test of the liquid water-holding capacity
is discussed in the conclusions section.
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3 Application of the method
3.1 Study area and input data

The Noah LSM requires seven input variables, and the forcing data from the North
American Land Data Assimilation System (NLDAS-2) are used to drive the model. NL-
DAS forcing data are at 1/8°-grid resolution (approximately 12.5km) and available at
hourly time scale and discussed in detail by Cosgrove et al. (2003) and extensively
validated by Luo et al. (2003) and Pinker et al. (2003). The model outputs are evalu-
ated against ground-observation data at various SNOTEL stations located in the Sierra
Nevada Mountains of California as well as at a SNOTEL site in Utah, which is close
to a snow- surface temperature data collection site. Brief descriptions of these study
areas are given below.

3.1.1 SNOTEL stations in California

Snow-water equivalent (SWE) observations at SNOTEL sites in California are used
here to verify the control and outputs of the modified models. These ground observa-
tions are at clear vegetated land and provide snow information with reasonable accu-
racy (Serreze et al., 1999). SNOTEL stations have also been used by others for Noah-
related studies (Pan et al., 2003; Jin and Miller, 2007; Livneh et al., 2009; Barlage et al.,
2010; Pederson et al., 2010). These stations measure daily SWE, 2 m air temperature,
and precipitation, as well as soil moisture and soil-temperature data; a more compre-
hensive discussion about these sites is given on the Natural Resources Conservation
Service (NRCS) website. Here, the data used are quality-controlled as described by
Serreze et al. (1999), and a total of 22 SNOTEL stations have been used for the 7 yr
period from June 2001—June 2008. The elevations of the Sierra Nevada Mountains
stations range from 1576—-2961 m.

Over the study period, the maximum SWE is observed at the highest-elevated station
(SNOTEL Station #574) and was 2628 mm in 2006. This year was an El Nifio year,
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which usually generates higher than normal SWEs in the Southwest (Jin and Miller,
2007).

Land-surface characteristics were derived from the grid cell within which SNOTEL
stations are located. Although SNOTEL stations are at installed in open spaces, we
wanted to simulate Noah with grid-scale attributes to facilitate model application at
large scale. Detailed comparisons are shown for four Stations: #356, #508, #463, and
#539, and elevation and average annual rainfall over these stations are given in Table 1.
Later, an overview of the model performance over 21 stations is also provided.

3.1.2 T. W. Daniel Experimental Forest site, Utah

Utah State University (USU)’s T. W. Daniels Experimental Forest (TWDEF) has an
experimental site (41.86° N, 111.50° W) at an elevation of 2600 m, roughly 30 km north-
east of Logan along the border between Utah’s Rich and Cache counties. Various prop-
erties of snow, vegetation, soil, and atmosphere are measured every 30 min at 12 mon-
itoring weather stations and at an eddy covariance tower. Weather stations distributed
across the site record air temperature, humidity, snow depth (when present), soil mois-
ture, and sundry other quantities, while the eddy covariance system records atmo-
spheric fluxes. However, snow-temperature data collection started from 2008; hence,
for this work, water year 2009 data were used. More information about this study site
can be found at http://danielforest.usu.edu/Maps.aspx.

Near the experimental site, a SNOTEL station (#1098) was also installed in
July 2007, and the model was simulated using NLDAS grid data where the station re-
sides. NLDAS precipitation data were bias-corrected using the daily precipitation data
recorded at this station. Model-simulated snow-surface temperature and energy-flux
data were verified using the TWDEF site records of snow-surface temperature and
energy fluxes.

The location of the SNOTEL stations in California and Utah are shown in Fig. 1.
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3.2 Nash-Sutcliffe model efficiency coefficient

To assess the goodness-of-fit of a model, the Nash—Sutcliffe model efficiency (NSE)
coefficient is widely used and is potentially a reliable statistic. The NSE is a convenient
and normalized measure of model performance and is defined as:

S (Sh-8h)?
>1(sh-5,)°

where S, is observed SWE, S, is modeled SWE, and S, is the mean of observed
SWE during the total time period T. NSE can range from —oo to 1. An efficiency of 1
(i.e., NSE = 1) corresponds to the model that is a perfect match of the observation. An
efficiency of 0 (i.e., NSE = 0) indicates that the model predictions are as accurate as
the mean of the observed data, whereas an efficiency less than zero (i.e., NSE < 0)
denotes that the model is not a good predictor of variable of interest. In essence, the
closer the model efficiency is to 1, the more accurate the model is. Generally, a good
NSE values are greater than 0.7.

NSE =1 - (13)

4 Results and discussion

A comparison between the SWE (blue line) estimated by the Noah model (called “con-
trol” in Fig. 2) and the observed SWE at the SNOTEL stations is shown in Fig. 2. In
general, the control model underestimates the SWE, although the underestimation of
the modeled SWE differs from year to year and from station to station. At some stations
and during some years, simulated SWE compares relatively well to that of observed
SWE than other locations and years. For example, at Station #356, the SWE during
water years 2002, 2003, 2004, and 2008, were certainly less than observed but mod-
estly captured (~ 40-60 % of the maximum SWE at the ground). Elsewhere, simulated
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SWE is almost negligible, particularly at Station #463 (less than 20 % of the ground
observed maximum SWE).

The primary reason for the Noah land-surface model’s negative bias in SWE esti-
mation is because of imperfection in its current snow-physical processes, as discussed
earlier. In addition, uncertainty in input can be quite substantial as well, especially in the
mountainous environments. Precipitation, a primary input for quantifying snowfall, can
be extremely variable in space and time in high-elevated areas. Mitchell et al. (2004)
discussed this issue and pointed out that precipitation data in the NLDAS system are
based on the National Weather Service (NWS) precipitation gauges. These gauges,
located mostly in valleys, are known to underestimate higher-elevation precipitation
(Pan et al., 2003). Pan et al. (2003) compared the NLDAS precipitation with SNOTEL
precipitation from September 1996—-September 1999 and found that SNOTEL precipi-
tation is, on average, more than twice the amount of the NLDAS precipitation data. On
the other hand, differences in other forcing data between NLDAS and those of stations
were found to be insignificant (Luo et al., 2003).

Therefore, a simple precipitation bias-correction method was applied to NLDAS pre-
cipitation data, while no corrections were made to other NLDAS forcing data. Precipita-
tion data were adjusted by first determining the ratio of total yearly winter precipitation
(October—May) from SNOTEL to that of NLDAS. Then, NLDAS precipitation was scaled
by the corresponding ratio. This simple bias correction shows that, in general, NLDAS
precipitation is less than that recorded at the studied SNOTEL sites (Pan et al., 2003);
thus, a substantial increase in SWE can be seen in years and stations where SWE
was very poorly modeled (e.g., Station #463). There are a few years in which NLDAS
precipitation data were more than the total precipitation recorded at the station and,
therefore, precipitation bias correction resulted in reduced simulated SWE when com-
pared to the control model (e.g., water year 2004 at Station #356, water year 2008 at
Station #539). However, the number of snow-covered days has not been affected sig-
nificantly (red line in Fig. 3 and termed as “control-bias-corr”) with the bias correction.
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Model bias can also increase at sites where additional snowdrifts can result from
wind or at sites with precipitation under-catch. The Noah land-surface model does not
incorporate any physical processes for the effect of wind drifts; consequently, no ad-
ditional processing is done for cases when accumulated SWE exceeded accumulated
rainfall. From this point on, the simulated SWE after bias correction will be referred to
as the “control” run of the Noah LSM and will be used for evaluation of the modified
approach, which is termed as “Noah-T” run.

Simulation of the Noah LSM modified with the UEB snow model is compared at SNO-
TEL stations and is shown in Fig. 4. The modified Noah shows substantially improved
SWE estimation in terms of increasing the amount of maximum SWE as well as delay-
ing snowmelt. However, water year 2007 (a moderate La Nifo year) experiences the
least amount of snow in all of the stations compared to the other six years of study, and
the improvement from the modified model is not significant compared to the control run
because the modified model uses available energy to melt shallow depths (less than
0.1 m) of snow.

While the modified model enhanced SWE simulation by using the Noah LSM, it also
shows delayed SWE melting in few years, for example, in water year 2004 at Stations
#463 and #508 and in water year 2008 at Station #508. This late melting can be partly
explained by comparing the simulated SWE by the control-bias-corr model and the
control model (Fig. 4) at Station #508. At this station, NDLAS precipitation was more
than that observed in 2004 and 2008 and, therefore, after precipitation bias correction,
the control-bias-corr model predicted less snow than the control model. In general,
forcing data from NLDAS, other than precipitation, are well validated but, at this location
and in these years, forcing uncertainty may still prevail. Figure 5 shows the maximum
and minimum daily temperatures observed at Stations #508 and #463 from 1 April to
20 May 2004. During this period, NLDAS temperature data were comparatively cooler
than observation, but the difference in maximum air temperature can affect the snow-
melting process and time (Hamlet et al., 2005).
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Nonetheless, the modified approach has improved SWE estimation. Figure 6 shows
the components of water balance-precipitation, sublimation, and snowmelt for the win-
ter of 2001-2002 at California SNOTEL stations #356, #508, #463, and #539. During
the accumulation period, snow is lost because of both sublimation and snow melting
but the later is the primary reason for control model’s low SWE bias relative to the ob-
servation. As discussed earlier, the control model simulates snow melt whenever the
temperature of the snowpack reaches freezing point, and then melt water immediately
becomes runoff. On the contrary, in the modified approach, snowmelt commences only
when the net energy relative to the melting point is positive and snow melting do not
start until later in the spring season (Fig. 6d, h, |, and p). Loss of snow due to sub-
milation from modified Noah-Ts is less compared to control model, particularly during
the period control model has simulated snow on the ground (Fig. 6c, g, k, and o). This
is because; control model applies penman equation (Wang et al., 2010) to compute
snow sublimation while the modified model uses turbulent heat flux equation (Tarboton,
1994).

In the modified model, liquid water holding capacity of the snowpack was considered
before the melt water becomes runoff and the effect of the liquid water content is shown
in Fig. 7. The modified model was simulated with 0 and 5 % liquid water content, and the
difference in response is seen only during the ablation period. There is no significant
change in melt outflow rate until the beginning of the melt period. The simulation run
with 5 % liquid water-holding capacity delays the onset of snowmelt, compared to that
of 0 % liquid water-holding capacity for less than a day to approximately a few days.

The modified model was also used to simulate snow at a Utah SNOTEL site (Station
#1098) near the TWDEF forest and simulation result is shown in Fig. 8. At this site, the
SWE predicted by the control model does not show strong negative bias unlike simula-
tion at all the California SNOTEL sites, and completion of the snowmelt by the control
model is later than the observation time. The modified model rectifies these problems
by improving the amount of SWE, as well as taking into account the earlier onset of
snowmelt. Near this site, snow surface temperature is recorded and in Fig. 9 compares
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simulated snow-surface temperature and outgoing long-wave energy with that of ob-
servation for the first ten days of May 2009. Both the control and modified model have
shown reasonable agreement with the observed surface temperature cycle although
the control model simulates a colder snowpack. This is possibly because snow albedo
at this site is relatively high (0.76) when compared to that of the California stations.
As a result, snow-melt events are initiated later. In contrast, during the accumulation
period, the modified model simulates SWE close to the observation, although melts the
snowpack few days earlier than observation time.

At the California SNOTEL sites, neither the snow-surface temperature nor the en-
ergy flux measurement are available; hence, a comparison between the control model
and the modified model simulated snow-surface temperature and turbulent fluxes at
SNOTEL Station #356, as shown in Fig. 10. During the month of April 2002, there
is no significant difference between the simulated surface temperature of the control
model and that of the modified model, although the former is simulating a colder sur-
face compared to the modified model (Fig. 10a). Therefore, latent heat flux computed
by the modified model is larger compared to that of the control model (Fig. 10e). The
differences in sensible heat flux (Fig. 10c) and outgoing long-wave radiation (Fig. 10d)
between the control model and the modified model are found to be small. However,
a significant difference between the models can be seen in the snow-melt outflow rate
(Fig. 10b). During this time period, in the control model number of melt events reduced
the snowpack while modified model did not simulate any snowmelt.

An additional review of the effectiveness of the modified model in predicting maxi-
mum SWE is presented in Fig. 11, where maximum-modeled SWE as a percentage
of ground-observed maximum SWE is shown at the four California SNOTEL stations
for seven years of the study period. Although precipitation bias correction improved
model SWE estimation, the overall enhancement in maximum SWE prediction by the
modified model is evident (Fig. 11). A similar comparison is shown in Fig. 11, which
includes the 21 California SNOTEL stations over the Sierra Nevada Mountains. The
control model can reasonably predict SWE at locations where maximum SWE is rel-
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atively less (SWE,,,, < 500 mm). However, bias is more pronounced at locations with
higher snowfall. The modified model has enhanced SWE estimation at all locations, but
improvement is more prominent for observation stations where the maximum snowfall
is between 500—-1000 mm.

Additionally, the modified model’s overall predictive power to simulate SWE is de-
scribed by the Nash-Sutcliffe coefficient, shown in Table 2. For all stations, the value
of the coefficient is almost always positive, which again supports the accuracy of the
modified model in SWE estimation.

Snow-covered ground can affects soil temperature, as well as moisture content of the
underlying soil. Although the scope of the paper is only limited to evaluating alternative
processes for snow temperature and snowmelt, soil temperature and moisture from
the control and modified models are compared with respective observations at the
SNOTEL stations. Figure 13 shows the comparison of model output with observed soil
temperature and soil moisture 5 mm below the ground at Stations #508 and #463. The
control model predicts less snow and, therefore, the ground is more exposed to the
cooler atmosphere (during the month of January in Fig. 12c and d). But, the ground
is warmer and soil temperature is above the freezing point during most of the snow
season. The observation sites initialize the measuring instrument at every water year
and so for the first few months, the soil moisture is recorded as zero. Control model,
with frequent snow melt event, control model simulates a higher soil moisture fraction
while soil moisture content is reduced significantly (Fig. 12e and f) in the modified Noah
model because of less snow melt event during the snow season. Additional analysis
of improving the soil temperature and moisture content is suggested but is beyond the
scope of this study.
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5 Conclusions

The Noah LSM has been identified to under predict snow-water equivalent throughout
the snow season and melt away all the snow early in spring. The control model simu-
lates snowpack as a single layer and estimates the snow-surface temperature based on
the energy flux on the snow surface and the air temperature above the snow surface.
When the snowpack is at freezing temperature (0°C), snow starts to melt. In reality,
snow temperature is not the only determining factor for snow melt. To begin snow melt-
ing, the entire snowpack is required to be isothermal and the modified Noah model, like
UEB model, determines this by accounting for internal energy of the snowpack. This
melt water does not instantly become runoff but remains within the warm snowpack
up to the liquid water-holding capacity. Once this water-holding capacity is exceeded,
snowmelt becomes runoff.

In addition to considering internal energy of the snowpack, force-restore method
was applied in modified Noah model to compute snow-surface temperature. The re-
sults show that snow surface temperature is similar and sometimes warmer than the
temperature computed by the control model and thus did not add any benefits to the
model. The primary factor for improvement in modified model's SWE estimation is the
regulating melt events.

The new scheme adds only two prognostic variables and is compatible with other
physical processes within the model. One effort of this study was to preserve the sim-
plicity of the Noah model but remove model deficiencies. In general, the modified Noah
LSM outperformed the control model.
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Appendix A

Surface-energy balance at the snow surface:
Ryn — 80T34 =G+H+ ,BL\,Ep - LP + Prcp(TS -T,)

T, - Teoi
Ry, - e0T% = kSA—zsm' +0C,Ci(Ts = 6,) + BLE, — LiP, + Pcy(T, - T,)

where Ty is the surface temperature (K), T, is the air temperature (K), K is the thermal
conductivity of soil, p is the density of the air, Cy is the turbulent-exchange coefficient,
Az is the depth of the snowpack plus half of the top soil layer, Ty is the soil tempera-
ture at half of the top soil layer, Ry, is the net short-wave radiation, ¢ is the emissivity
of the surface, o is the Stephen Boltzman’s constant, L; is the latent heat of fusion,
¢, is the specific heat of air, P, is the precipitation, 6, is the potential air temperature
above the ground (usually at 2m), L, is the latent heat of condensation, and E; is the
potential evaporation rate.
Applying Taylor’s expansion on o TS4 :
Ry, - €0TS —4e0T? Ts=To yJs= Toor, PC,Cy [(Ts = T,) = (8, - To)] +BLE,
T, Az
= LiP+ Prey(Ts = Ty).
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Dividing both sides by pc,Cy:

Ry, —e0Te 4eoTe T-T, k  To-Te
- = +(Tg-Ty)—(6,-Ty)
pCpCH pCpCH To pCpCH Az
+ ﬁLvEp _LfPr+ PGC(Ts - To)
PCpCh PCpChy
Ry, —eo Ty BLE, -LP 4eo TS P.c
Fn=20Te (6, 1) 22 - ZHFe =1t —— [ (T, = T)
PC,Ch PCCh  PCCy PCCu T, PC,Cx
+ k Ts - 7-soil
pc,Cy Az
. 4ec Ty Pic
Ryq—e0Ts BL,E, -LiP,
0CpCh (8= To) - P¢,Cn ~ ;G = (To = To) + k Ts — Toi
r+1 T Y o, Cy(r+ 1) Az
k k
={1+ Ts - 7-0 - 7-soil
PC,Cy(r+1)Az PC,Cy(r+1)Az
Rgn-£0Ta+LiPrc BLyE
B 0" bc,Cy(r+1)Az " Soil r+1
Ts = 1+ —K
pCpCr(r+1)Az
where:
480'7-: PGC
= +
PCCuT,  pc,Cy
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where T is the snow temperature (K), T, is the air temperature (K), K is the thermal
conductivity of soil, p is the density of the air, Cy is the turbulent-exchange coefficient,
Az is the depth of the snowpack plus half of the top soil layer, T is the soil temper-
ature at half-depth of the top soil layer, Ry, is the net short-wave radiation, ¢ is the
emissivity of the surface, o is the Stephen Boltzman’s constant, L; is the latent heat of

fusion, ¢, is the specific heat of air, P, is the precipitation, 6, is the potential air tem-

perature above the ground (usually at 2m), L, is the latent heat of condensation, and
E, is the potential evaporation rate.
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Table 2. Nash—Sutcliffe efficiency coefficients for the modified model (the efficiency coefficients

for the control model are shown in parentheses) at four SNOTEL stations.

Station 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 2006-2007 2007-2008
#356 0.5865 0.8655 0.6464 0.6489 0.446 0.6278 0.6955
(-1.0433)  (-0.4183)  (-0.1951)  (0.0574)  (0.0174)  (0.5267) (0.068)
#508 0.81 0.107 0.6625 0.8599 0.9604 0.6684 0.8499
(-0.1853)  (=1.09) (0.1878)  (-0.1515)  (0.6565)  (0.6155)  (0.7154)
#463 0.2375 0.7586 0.4447 0.5949 0.1315 0.5727 0.6461
(-1.34)  (-1.6837) (-0.4926) (-0.8203) (-0.2948)  (0.5431)  (-0.1503)
#539 0.0620 -0.1145 0.4312 0.1109 0.4861 0.4186 0.2296
(-1.0426)  (-0.9057) (-0.6300) (-0.8621) (-0.3793)  (0.4049)  (-0.6509)
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Fig. 2. Graphical example describing the Noah LSM’s snow-temperature estimation process
and how the snow-melt events are initiated: (a) air temperature T, (b) temperature T, es-
timated from the surface-energy balance, (c) resultant snow-skin temperature, T,, (d) rate of
snowmelt M, and (e) percentage of snow-cover area (SCA). The red lines in (a), (b), and (c)
indicate 273.15K.
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Fig. 3. Simulated SWE with NLDAS precipitation (blue line) and after precipitation bias correc-
tion (red line) are compared with observation (black line) sites: (a) #356, (b) #508, (c) #463,
and (d) #539. Model run before precipitation bias correction is called “control”, and the model
run after precipitation bias correction is called “control-bias corr”.
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Fig. 4. SWE from modified model run Noah-T; (red line) is compared with observations and
control run, control-bias-corr, after precipitation bias correction (blue line) at (a) #356, (b) #508,

(c) #463, and (d) #539.

13397

[

Jaded uoissnosiq

Jaded uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
10, 13363-13406, 2013

Evaluating the UEB

snow model in the

Noah Land-Surface
Model

R. Sultana et al.

11 L


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13363/2013/hessd-10-13363-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13363/2013/hessd-10-13363-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

HESSD
10, 13363-13406, 2013

Jaded uoissnosiq

Evaluating the UEB

snow model in the
o . Noah Land-Surface
()
= 10 @ Model
E 9]
= %
0 73 R. Sultana et al.
S
-100 260 460 660 860 10‘00 1200 g
- T
@
N - I R
20 g
s [k [kl
g 10 <
£ (2}
: - =l el
0 =}
=
L] 200 400 600 800 1000 1200
Fig. 5. NLDAS hourly temperature data from 1 April-20 May 2004 shows the daily maximum - -
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Fig. 6. Components of water balance on the snow surface are shown at the four SNOTEL
stations for the snow season of 2001-2002. In (a), (e), (i), and (m), the snow-water equivalents
simulated by the control and modified models are compared with observed SWE at #356, #508,
#463, and #539 in CA, respectively. In (b), (f), (j), and (n) the accumulated precipitation at
#356, #508, #463, and #539, respectively, are shown. Accumulated sublimation and snowmelt
between the control and modified models are compared and shown in the third and fourth rows,
respectively.
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Fig. 9. (a) Snow-surface temperature and (b) long-wave radiation @, from the control and
modified models are evaluated against recorded snow temperature and outgoing long-wave
radiation data at the TWDEF site near SNOTEL station #1098 during the 10 day period in May
2009.
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Fig. 10. Simulated surface temperature and energy on the snow surface is compared between
control and Noah-T, models at SNOTEL station #356 during the month of April 2002.
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Fig. 11. Simulated maximum SWE as a percentage of observed maximum SWE for seven

years at four CA SNOTEL stations (a) #365, (b) #508, (c) #463, and (d) #539.
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